A number of non-invasive approaches have been developed over the years to provide an objective means of evaluating and diagnosing skin melanoma. However, the current gold-standard in melanoma diagnosis is the examination of a skin lesion by the trained eye of a physician followed by histological examination of an invasive excisional biopsy of the skin specimen. Diagnosis of melanoma by simple visual examination is incorrect in almost 1 out of every 3 melanoma diagnoses. Therefore, the diagnosis of early stage in-depth melanoma by non-invasive methods remains an active area of research. Recent advancements in computer and digital technology have provided several sensitive tools to evaluate the different characteristics of a melanoma lesion including its contour, edge, color, size, depth, and/or elevation. These tools include (1) digital imaging systems and computer analysis instruments such as MoleMax™, SIAscpe™, SolarScan®, MelaFind™; (2) tape stripping mRNA; (3) laser-based technology such as Confocal scanning laser microscopy (CSLM), optical coherence tomography (OCT), laser Doppler perfusion imaging (LDPI), (4) Ultrasonography, and (5) other imaging tools such as electrical bio-impedance, MRI and PET scan. The ultimate goal of all investigational instrumentation is the prevention of unnecessary biopsies and a decrease in the prevalence and morbidity associated with malignant melanoma.

Key words: melanoma, dermoscope, ultrasound, MRI, PET scan, digital image analysis
However, all these techniques as described above are dependent on the skill of the examiner and can often lead to the biopsy of benign PSLs and potential disregard of malignant ones [16]. Additionally, biopsies are invasive, cannot be performed in every suspected lesion and may have side effects that hinder follow-up studies. In order to decrease the number of excessive invasive biopsies and the potential for subjective human error, we searched for new and non-invasive morphological techniques and tools to assist in the diagnosis of melanoma in its early stages. Such tools include digital imaging systems and computer analysis instruments like MoleMax™, SIAscope™, SolarScan, MelaFind™, tape stripping mRNA, ultrasonography, MRI and PET scan; laser-based technology like Confocal scanning laser microscopy (CSLM), optical coherence tomography, laser doppler perfusion imaging (LDPI); and electrical bio-impedance. A search of the literature from the period between 1970 and 2007 was performed using PubMed, Medline and Google and relevant articles, as well as pertinent articles from each of their bibliographies which were reviewed without any language restriction. The search criteria were all new non-invasive technologies useful for diagnosing melanoma, availability of sensitivity and specificity of methods, discussion of advantages and disadvantages of each method, and the capability of producing good images. Studies that detected skin cancers other than melanomas or had a paucity of supporting scientific data were excluded.

Digital image capturing and computer processing/analysis

Various dermoscopic instruments utilize a digital camera or a built-in image capturing system for photographing PSLs. Digital image capturing allows for non-deteriorating images with excellent quality and a numerical format that permits objective measurements and teleconsultation [17]. Digital dermoscopy analysis systems can attain resolutions of up to 1,280 × 1,024 pixels, with images acquired in vivo at 15 to 25 photograms. Commercially available digital cameras can attain resolutions up to 3,000 × 2,000 pixels but are inadequate because images can be viewed at full resolution only after they have been saved and not in real time [18]. Due to these great advances in optical resolution, dermoscopy remains a quantifiable, easily applicable and reproducible diagnostic tool to help make PSLs with unclear malignant potential a manageable disease [19]. After an image of the PSL is captured, the computer recognizes the pigmented border of the lesion by processing it via segmentation and border extraction [20-23]. The software then measures the degree of asymmetry, border irregularity index, hue, quantity and changes in colors, textures, diameter, perimeter, length, area, internal color distributions, and linear diameter [24-26]. This allows for algorithms to factor the weight of each component in the formulation of a diagnosis and provide an objective analysis of a PSL, which can be compared to previously taken images of the same lesion or the standard software PSL image [27]. The computer software has the ability to provide a diagnosis after evaluating the data, which avoids the potential for subjective human error.

Some systems can also objectively evaluate pigmented cutaneous lesions by artificial neural networks (ANNs) [6, 28, 29]. ANNs are mathematical networks based on a biologic neural system that may be implemented as a computer software program. ANNs have powerful modalities for the recognition of complex patterns, with the ability to maintain accuracy even when confronted with missing or inaccurate data which are not readily apparent to human analysis [30]. The functioning ANNs knowledge is self-learning and uses its experiences from previous input data (i.e. melanocytic lesions) to analyze new data. Although ANNs have traditionally been used in engineering, researchers are now applying them to medicine to help doctors analyze, model, and make sense of complex clinical data. ANNs do not require any specific criteria for the diagnosis and function independently of the physician’s knowledge, so the inexperienced user can screen PSLs [30, 31]. With the help of these digital imaging and computer analysis techniques, sensitivity and specificity levels can be reached which are near or better than those of expert dermatologists [32-35].

MoleMax™ (Derma Medical Systems, Vienna, Austria) is based on the light polarization technique of dermoscopy [36]. There are two types of MoleMax™ available, with MoleMax I™ containing only one camera and MoleMax II™ having a two camera system, which is particularly helpful for continuous use by different users. The polarized light source is used with the handheld ELM for close-up imaging and does not require any oil immersion or contact fluids between the skin and ELM. ELM images are automatically transferred, allowing for continuous real-time documentation of PSLs with the examination process [36]. The MoleMax I™ software is conducive for follow-up examinations as the transparent overlay feature performs a standardized comparison of images with previous data. Apart from live videoscropy, MoleMax™ has a CD-ROM based technology that allows total body photography to create a digital map of the patient’s skin for patients with high risk factors and large PSLs. Physician use the stored images in the CD-ROM as a baseline comparison when suspicious changes are found and also for follow-up melanoma screening visits.

Spectrophotometric Intracutaneous Analysis (SIAscope™, Astron Clinica, Cambridge, UK) is a fast, non-invasive and safe method for the diagnosis of PSLs up to 2 mm. This high resolution instrument visualizes the skin structure, vascular composition and reticular pigment networks with detail and clarity, attaining up to 96% sensitivity [37, 38]. There are two methods of SIAscopy, contact and non-contact. Contact SIAscopy utilizes a hand held scanner (SIAscanner) that is placed directly on skin surface of interest before scanning it with light. In non-contact SIAscopy the skin is not touched. A digital camera with a special filter is used to produce images of larger areas of skin. Both methods generate SIAgraphs, computer-generated images that show the distribution of major skin components (melanin, collagen and blood) [37]. The SIAscope™ is based on the principle that individual skin components vary in their optical properties. The device emits harmless radiation ranging from 400 to 1,000 nm into an area of skin with dimensions of 24 × 24 mm or 12 × 12 mm and then measures the reflected light quantity for each wavelength [33, 38]. Skin and its components absorb and/or reflect light to various degrees and can interact preferentially with particular wavelengths of light. The SIAscope™ extracts information regarding the location, quantity and distribution of the
skin and its chromophores, including melanin, collagen, and hemoglobin (i.e., vascularity) within the epidermis and papillary dermis, producing eight narrow-band spectrally filtered images, and then displays a characteristic SIA-spicopic image (figure 1). The data are then displayed via SIAGraphs, which are graphical representations of the digital information [38]. These chromophore wavebands may be removed to view only the melanoma diagnostic information on the graph. These simple features were found to be highly specific (up to 87%) and sensitive (up to 96%) for melanoma [38]. Moncrieff et al. studied 348 lesions over a 12 month period with the SIAscope™ and found it to be highly specific (80.1%) and sensitive (82.7%) [33]. SolarScan® is an automated instrument (Polartechnics Ltd, the Sydney Melanoma Unit and CSIRO) for the diagnosis of primary melanoma. It has a three charge-coupled device (CCD) video camera for acquiring digital images of lesions, which can be compared with an empirical database of more than 1800 benign and malignant lesions. Oil is placed on the lesion to eliminate surface reflections and the remote-head camera takes 24-bit, 760 × 570-pixel images with each pixel capturing a 32 × 32 μm area of the skin [39-41]. The fiber optic light source is coupled to a halogen lamp with a color temperature of 3,000 °K. The calibration procedure consists of white balance, black balance, shading correction, dynamic range, and image capture of a reference surface of known reflectivity [39]. In addition to the session-level calibration, the system also has image-level calibration, which is facilitated by 4 gray-scale calibration targets present in each image. The resolution of each of these images is 64 μm per pixel (× 6.2 screen magnification) [39]. Changes in color, pattern and size are recorded along with the position of each monitored lesion on a graphical map of the patient’s body. Images of a lesion from different time points can be viewed simultaneously and the corresponding analysis is displayed on four different graphs. The SolarScan® software can automatically select a computerized border for each lesion photo or the user can select one of the three border selection methods to assist the computer with lesion analysis (figures 2A-B). The three-chip camera and color calibration ensures accurate detection of up to 14 shades of dermatoscopic colors, as well as the specific color of Blue-White veil, which is extremely useful for invasive melanoma diagnosis, with a specificity of 97% [39]. Preliminary data suggest that its performance is comparable or superior to that of clinician groups [24, 39, 40]. In the multicenter study of SolarScan, SW Menzies et al. studied 2,430 PSLs and found that SolarScan® has 91% sensitivity and 68% specificity, which is comparable or superior to expert diagnosis [24]. MelaFind™ (Electro-Optical Sciences Inc., NY) is a multispectral digital dermoscope with a specialized imaging probe and software to assist with differentiation between early melanoma and other PSLs. Filtered white light from a stable source is transmitted to the skin by a fiber optic illuminator controlled by the computer. After the CCD camera has detected 10 different, narrow-spectrum wavelength bands including visible and infrared light, a multispectral sequence of digital images 1,280 × 1,000 pixels in size is produced in less than 3 seconds [34]. Afterwards, each sequence of multi-spectral images is analyzed for wavelet maxima, asymmetry, color variation, perimeter changes, and textures changes, the software assists with a differential diagnosis [35]. Images are obtained with the MelaFind™ digital dermoscope gray-scale with 1024-level intensity resolution and are produced in each of 10 spectral bands ranging from 430 nm to 950 nm controlled by narrow interference filters on a rotating wheel [42]. Each image has more than 1 million pixels within a 2 × 2 cm visual field, and each pixel is approximately 20 μm [34]. The acquired images are stored without loss of resolution and identified with headers that record wavelength and exposure. Initial studies demonstrated that MelaFind™ can achieve 95% to 100% sensitivity and 70% to 85% specificity [34, 35]. The Fotofinder dermoscope, DermDOC™ is an example of a video dermoscope attached to a digital camera system [36]. It can provide high quality images, variable magnification, macro and micro application, and analytical capability. However, video dermoscopes are at a disadvantage compared to cameras because they lose image resolution after conversion to images.

Figure 1. SIA-spicopic image of an invasive melanoma with different skin chromophores(Used with permission of Astron Clinica Ltd, Cambridge, United Kingdom). A) Invasive Melanoma. B) Hemoglobin. C) Collagen. D) Melanin.

Figure 2. The SolarScan software detects shape and border of a pigmented lesion (Used with permission of Polartechnics Ltd, Erskineville, Australia). A) Pigmented lesion. B) Lesion shape and borders detected and analyzed with color segmentation.
Tape stripping mRNA method

Tape stripping is an established and non-invasive method that allows for the recovery of cells comprising the upper epidermis. An adhesive tape is applied to PSLs, briskly rubbed on in a circular motion, and the border of the lesion is demarcated on the tape with a surgical marker. As the tape is removed, superficial cell layers of the stratum corneum (SC) are stripped off and RNA is harvested from these skin samples. The marker demarcation allows for the removal of tape that contacted normal epidermis during processing for mRNA extraction. This yields enough mRNA for analysis by ribonuclease protection assay (RPA) to differentiate melanoma from benign lesions based on gene expression profiles [43]. A study evaluating 150 suspicious pigmented lesions found the tape-stripping toluidine blue method to have a sensitivity of 68.7% and a specificity of 74.5%, demonstrating its potential as a helpful diagnostic tool for the early detection of melanoma [44]. DermTech’s (La Jolla, CA) Epidermal Genetic Information Retrieval (EGIR™) technology is the commercialized form of this nucleic acid retrieval process and relies on the use of a custom adhesive film to sample the surface layer of skin. The EGIR™ technique has the advantage of being non-invasive, rapid and easy to perform, painless, and practical for virtually any skin surface. EGIR™ technology also has the advantage of being able to retest the same lesion, leading to a more accurate diagnosis of melanoma and reducing the need for painful biopsies. In a study by Wachsmann and colleagues, suspicious pigmented lesions were tape stripped four times using EGIR™ and then biopsied as per standard of care. Normal, uninvolved skin was also tape stripped to serve as the negative control. They found a 20-gene classifier that discriminated melanoma from atypical nevi and subsequent testing of this classifier found it to be 100% sensitive, 90.6% specific and 92.4% accurate for detection of both in situ and invasive melanoma [45, 46]. Additional clinical trials are currently underway to finalize candidate gene expression profiles for identifying early stage melanomas.

It is important to note that tape stripping is not expected to substitute for necessary biopsies. Tape stripping is most beneficial as a pre-screen for suspicious pigmented lesions. If an RPA comes back positive for a particular gene expression profile associated with melanoma, the pigmented lesion should be excised and the depth determined.

Ultrasound

Ultrasound scanning has quickly become an important diagnostic tool in dermatology due to its cost effectiveness, ease of use and safe noninvasive method of demonstrating small differences between nevi and melanoma. Ultrasound proves useful in preoperative situations and skin therapy monitoring because it can provide information about inflammatory processes of skin and subcutaneous tissue as well as axial and lateral extension of tumors [47, 48]. In dermatology, there are two types of probes used: electronic 7.5 to 13 MHz linear probes and sectorial mechanical 10 to 20 MHz probes [49, 50]. 20 MHz represents the upper frequency limit of human hearing and therefore using the 7.5 to 20 MHz probe is very safe for imaging techniques [51].

Transducers with higher frequency wavelengths are beneficial for diagnosing skin lesions because they allow better resolution of small lesions located near the skin surface. However, with increasing frequency, the depth of penetration of ultrasound waves decreases (i.e. 20 MHz ultrasound penetrates only 8 mm), leaving the choice of the probe frequency dependent on the diameter and site of the lesion [51, 52]. Electronic 7.5 to 13 MHz linear probes depict flat and regular surfaces effectively and provide a wider field of surface vision and, therefore, a wider view than sectorial probes. Water bath sectorial probes with 10 to 20 MHz frequency have very superficial focusing and are excellent to study irregular surfaces. While various ultrasound transducers examine up to depths of 1.5 cm or more, 20 MHz probes have been effective at assessing the depth of melanoma invasion and 100 MHz probes have been useful for determining tumor thickness of thin melanocytic skin lesions (table 2, figure 3) [49, 50, 53, 54].

Resolution of ultrasound systems can refer to either axial or lateral resolution. The axial resolution is the smallest thickness that can be measured and the lateral resolution refers to the width of the smallest structures that can be resolved [51]. In general, ultrasound systems convert the voltage changes recorded by the transducer and display these signals as images. There are different types of signal processing ranging from A through E [53]. B-scans combine the information from sequential A-scans (Acoustic scan) and display each point according to its relative brightness (hence B-scan). Each point on a B-scan is brighter or darker, corresponding to the intensity of echoes from the corresponding anatomic structure. Therefore, B-scans provide images that resemble anatomic cross sections of scanned tissues [55]. Currently, B-scans are mainly used as ultrasonographic procedures in dermatology using intermediate- or high-frequency ultrasound systems while A-scan ultrasonic systems are mainly used in ophthalmology. However, A-scans can be used to assess skin thickness and C, D, and E-scans are various forms of B-scan addition also useful in dermatology (figure 4) [53].

With sonography, the preoperative tumor thickness is sometimes overestimated because of an underlying inflammatory infiltrate, which is also visualized as a hypoechoic area and cannot be distinguished from melanoma [51]. The dermatologic applications of B-scan ultrasound with 7.5 to 10.0 MHz transducers include the identification and description of suspicious palpable structures within the subcutaneous (solid, cystic, and complex); exploration of deeper aspects of larger tumors, assessing the relationship to nerves and vessels to provide crucial preoperative information; and follow-up of patients with malignant skin tumors including melanomas [56]. According to various studies, 7.5 to 10 MHz ultrasound transducers have excel-

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Axial resolution (m)</th>
<th>Lateral resolution (m)</th>
<th>Penetration (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>200</td>
<td>400</td>
<td>>15</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>300</td>
<td>>15</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>350</td>
<td>7</td>
</tr>
<tr>
<td>40</td>
<td>30</td>
<td>94</td>
<td>4</td>
</tr>
<tr>
<td>50</td>
<td>39</td>
<td>120</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>11</td>
<td>30</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2. Resolution of high frequency transducers [53]
lent sensitivity (99.2%) and specificity (99.7%) [51, 57-59].

However, in patients with melanoma, ultrasound scanning should be performed every 3 to 12 months according to the thickness of the primary melanoma [57-60]. Despite various frequency transducers examining depths greater than 1.5 cm, melanoma metastasis cannot be separated from that of another tumor. The quality of information depends heavily on the skill and experience of the examiner, clinical setting and history of melanoma. Ultrasound systems available for dermatological examinations are the Dermascan C (Cortex Technology, Hadsund, Denmark) (figures 5A-B), DUB 20 (Taberna pro medicum, Lüneburg, Germany) (figure 6), SSA-340 A (Toshiba Medical Systems, Neuss, Germany), and the Siemens Sonoline Elegra (Siemens, Erlangen, Germany), AU 4 Idea, and AU 5 Idea sonography (Esaote Biomedica, Genoa, Italy) (figures 7A-B).

Figure 3. A, B) Sonograpy frequency resolutions (Used with permission of Taberna Pro Medicum, Lüneburg, Germany).

Figure 4. Different types of ultrasonographic signal processing. Top (left to right): A-Scan, B-Scan (built up from 384 high frequency A-Scans), C-Mode (3D scan in horizontal cuts in different vertical layers [depth]), Bottom (left to right): RF-Scan (Raw data behind the recorded image), M-Scan (Skin elasticity measurement with high frequency digital ultrasound with a Vacuum Elasto Pump), 3D-Scan (From 10-30 parallel B-Scans). (Used with permission of Taberna Pro Medicum, Lüneburg, Germany).
Laser based technology

Optical Spectroscopy (CSLM – Confocal scanning laser microscopy) is an efficient in vivo imaging tool that allows for in vivo examination of the epidermis and papillary dermis, which is equivalent to the resolution of conventional microscopes. Assessment of a PSL by CSLM relies on the interpretation of images of micro-anatomical structures, which resembles a histopathological evaluation with similar criteria [61]. In CSLM, a laser beam is passed through a light source aperture and focused by an objective lens into a small focal volume within a fluorescent specimen. A mixture of emitted fluorescent light as well as reflected laser light from the illuminated spot is then collected by the objective lens. A beam splitter separates the light mixture by allowing only the laser light to pass through while reflecting the fluorescent light onto a detection apparatus with a pinhole-sized spatial filter. The fluorescent light passes through the pinhole allowing for detection by a photomultiplier tube or avalanche photodiode, which transforms the light into an electrical signal recorded by the computer. Images of horizontal sections are reconstructed into three-dimensions using multiple tomograms in the horizontal direction [62]. CSLM can obtain lateral resolutions up to 0.5-1.0 μm and axial resolutions (section thickness) up to 3-5 μm with longer wavelengths of light allowing for measurements of greater depth up to the papillary dermis [63]. Newer CSLM techniques use fiber-optic imaging instead of the pinhole aperture detector which allows for more flexible handheld devices for in vivo clinical use [64, 65]. In vivo CSLM is capable of identifying distinct patterns and cytologic features of benign and malignant PSLs which correlate with the histological criteria for melanoma (table 3, figure 8) [61, 66, 67]. Currently, two forms of CSLM application have been established in dermatology: the reflectance mode in the clinical field and the fluorescence mode in research. The reflectance mode demonstrates naturally occurring tissue components, whereas the fluorescent CSLM achieves contrast by the dynamic distribution pattern of the dye emission [68]. Reflectance CSLM depends on the inherent reflective properties of tissue structures and the presence of melanin, which results in a bright-white image signal that illuminates the cytoplasm of melanin-containing cells like pigmented keratinocytes, melanocytes, and melanophages [69]. Free cytoplasmic melanin pigments and cytoplasmic pigmented and nonpigmented melanosomes provide strong contrast for infrared laser light resulting in bright cytoplasm [66, 69-71]. Using near infrared illumination, the maximum depth of imaging is limited by the scattering of the sc surface and the optics of the skin [72]. There are two types of reflectance CSLM, diffuse and polarized. Diffuse reflectance spectroscopy in the wavelength range of 550 to 1,000 nm has oblique incidence imaging which helps to distinguish between benign and cancer-prone skin lesions [73, 74]. Polarized reflectance spectroscopy provides real-time diagnostically useful information for precancerous lesions which are characterized by increased nuclear size, increased nuclear/cytoplasmic ratio, hyperchromasia and pleomorphism, which are currently assessed by invasive biopsies [75, 76]. Pellacani et al. found the presence of non-edged dermal papillae, atypical cells, and isolated nucleated cells within dermal papilla, pagetoid cells, widespread pagetoid infiltration, and cerebriform clusters to be strongly correlated with MM diagnosis in their reflectance CSLM examination [77, 78]. Fluorescence CSLM depends on different fluorescent molecules (endogenous or exogenous) emitting fluorescence at different levels in tissue. Accordingly, a laser light with the appropriate wavelength can be used to excite these fluorescent markers.
cent molecules to emit a long wavelength signal which can be detected and displayed on a grey scale [79]. Anikijenko et al. showed that fluorescent labeled antibodies injected in an animal melanoma model showed a pathological overexpression of protein and also changes in the microvascular structures that enabled \textit{in vivo} detection of melanoma and surrounding blood vessels in athymic mice [80].

Remarkably, the presence or absence of monomorphic melanocytes as a single diagnostic criterion has been found to have a sensitivity up to 98.2% and a specificity up to 98.9% (table 4). However, in its current state of technological development, CSLM has two major limitations compared with conventional histology. It has a poor resolution of chromatin patterns, nuclear contours and nucleoli and can assess micro-anatomical structures only to a depth of approximately 300 \(\mu \text{m} \) [63]. Thus, processes in the reticular dermis cannot be examined for the presence or absence of invasion. Furthermore, melanomas without an intradermal component will most likely escape detection by CSLM in its current state [61]. The main advantage of CSLM is that it permits non-invasive quasi-histological assessment of the skin ‘at the bedside’. Multiple sites and lesions can be examined during the same visit, the same lesion can be evaluated at different time points, and images are available immediately for electronic storage and histopathology consultation [61]. Various CSLMs on the market use the technology described above, including Vivascope® 1500 and 3000 (Lucid Inc, NY USA), and OptiscanTM (Optiscan Pvt Ltd, Australia). Lucid, Inc. (www.lucid-tech.com) developed the VivaNet® telemedicine server and network which is designed to transfer and manage clinical data between dermatology practitioners using VivaScope® Confocal imagers with pathologists or other medical specialists. Optical coherence tomography (OCT) was developed in the late 1980s. While this technique was originally used to examine eye structure, it is now used widely in dermatology [81]. OCT is analogous to ultrasound B-mode imaging with the exception that it uses light rather than sound waves [82, 83]. OCT is described as an intermediate imaging device between ultrasound and CSLM that produces high resolution cross-sectional images of the internal microstructure of living tissue resembling an unstained histopathological section of skin [84, 85]. In contrast to the eye, which is naturally a low light scattering transparent medium, the skin is nearly non-transparent due to absorption and scat-

Table 3. Key features of pigmented lesions by CSLM [66]

<table>
<thead>
<tr>
<th></th>
<th>Nevus</th>
<th>Dysplastic nevus</th>
<th>Melanoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytology</td>
<td>Round-oval, bright, monomorphic Nevus cell nests</td>
<td>Round-oval, bright, larger cells present Nevus cell nests</td>
<td>Bright, polymorphous cells, occasional, irregular (star) shaped morphology nesting poorly defined</td>
</tr>
<tr>
<td>Brightness of image</td>
<td>Individual cells appear bright</td>
<td>Individual cells appear bright; focal, small, bright refractile granules; focal grainy image</td>
<td>Scattered bright, refractile granules, indistinct grainy/hazy image; intracellular and extracellular location</td>
</tr>
<tr>
<td>Dendrites</td>
<td>±; when present, small simple branching pattern</td>
<td>±; when present, small simple branching pattern</td>
<td>Frequent, large, complex branching pattern</td>
</tr>
<tr>
<td>Keratinocyte cell border</td>
<td>Readily detected</td>
<td>Focal absence</td>
<td>Poorly defined</td>
</tr>
</tbody>
</table>

\(^a \); Present or absent.

Table 4. Sensitivity and Specificity observed in various clinical trials done with VivaScope® 1500 and the VivaScope® 3000

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Year</th>
<th>Cases</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerger, et al. [158]</td>
<td>2004</td>
<td>117 (27 MM)</td>
<td>98.2%</td>
<td>98.9%</td>
<td>98.7%*</td>
</tr>
<tr>
<td>Pellacani, et al. [78]</td>
<td>2005</td>
<td>102 (37 MM)</td>
<td>97.3%</td>
<td>72.3%</td>
<td>81.3%</td>
</tr>
<tr>
<td>Gerger, et al. [159]</td>
<td>2006</td>
<td>162 (27 MM)</td>
<td>90.7%</td>
<td>98.9%</td>
<td>96.3%**</td>
</tr>
<tr>
<td>Pellacani, et al. [77]</td>
<td>2007</td>
<td>351 (136 MM)</td>
<td>91.9%</td>
<td>69.3%</td>
<td>78.1%</td>
</tr>
</tbody>
</table>

*Diagnostic criteria – monomorphic melanocytes only.

**Accuracy for melanoma.
tering; the former is mainly influenced by the concentration of melanin and hemoglobin, while the latter, by differences in the refraction index. In the wavelength range of 700 to 1,300 nm, absorption is relatively low, so that light penetrates deep into the skin and optical inhomogeneities are the main factor influencing the image [81]. When illuminating the skin, most of the photons are scattered more than once, which can lead to artifacts in the image. In the skin and other highly scattering tissues, OCT can image small blood vessels and other structures as deep as 1-2 mm beneath the surface [86, 87].

The OCT technique is based on the wave principles of the Michelson interferometer. The light sources used for OCT are low coherent superluminescent diodes operating at a wavelength of about 810 nm to 1,300 nm. OCT provides in vivo two-dimensional images with a scan length of a few millimeters, a resolution of about 15 μm and a maximum detection depth of 1.5-2 mm [72, 81, 86, 87]. OCT with an 810 nm light source is able to examine skin depths up to 700 μm while a 1,313 nm light source can examine up to 1.2-2 mm with reduced scattering [86, 87]. The reflection of the skin surface can be reduced by application of an ointment or glycerol, which makes the skin more transparent, reduces light scattering and increases detection depth [81, 88]. Alternatively, short coherence length can be achieved by ultrasound femtosecond laser pulses which can travel two paths [83, 89]. The first light path travels through air and is reflected back by a mirror and the second focuses directly into the skin. These two reflected lights combine at the detector. When the optical paths of the two beams are equal, the light from the two beams interferes constructively giving a bright spot, whereas when they are out of phase, they interfere destructively. Images are logarithmic false color or grey scale and are obtained by scanning the mirror at the end of the light path and the incident spot. Even though it is possible to almost achieve real-time imaging, the resolution only enables the visualization of architectural changes and not of single cells [81]. Axial resolution depends on the coherence length of the light source, whereas the lateral resolution is given by the focal spot size and the scan step. A calculation of the thickness of layers, the intensity of the signal and the light attenuation coefficient in different depths can be performed on the averaged A-scan in a region of interest. Melanocytic skin tumors show increased light scattering and more homogenous signal distribution than healthy skin. The disappearance of the second intensity peak, which represents an intact border between the epidermis and dermis, is suggestive for infiltrative malignant melanoma (MM) [81].

OCT measurement is unobtrusive, safe, and has no side effects. Because of the fast scanning mode (4 s for 4 mm scan length) and the low output power of the light source (in a range of a few milliwatts), this technique meets the safety standards for irradiation of tissue [81]. Compared to other non-invasive methods, OCT has higher resolution than ultrasound and greater detection depth and image size than CSLM [90]. Newer OCT modalities, such as the Doppler OCT, spectroscopic (absorption) and wavelength-dependent OCT, and OCT elastography are more precise and accurate with more real-time images [91]. A portable fiber-optic based OCT requires only 1 second to simultaneously provide high-resolution images of skin structure, collagen birefringence and blood flow [92]. With the Doppler and phase-resolved techniques, one can visualize the location of vessels and capillaries as well as determine the flow velocity in PSLs [93, 94]. Newer systems allow the storage of data and images in a digital format that enables quantitative software analysis of images.

Laser Doppler perfusion imaging (LDPI)

The vascularization of melanoma lesions has been a primary interest for many researchers. Microcirculatory activity within a tumor is believed to reflect focal changes within the boundaries of the lesion itself, irrespective of anatomical localization and even of the species of the host [95]. MMs usually show a higher heterogeneity in their structure and a higher vessel density when compared to benign PSLs because of neovascularization which starts very early during the radical growth phase [96-98]. Barnhill et al. suggested that, in terms of vessel counts, vascularization gradually increases during the transition process from benign nevi to dysplastic nevi and finally primary melanomas [96]. Furthermore, Tur et al. and Fallowfield et al. described the excess of pronounced vasculature as an indication that a nevi has a high chance of malignancy [95, 99]. Accordingly, vascularization is gaining importance in the assessment of PSLs and has potential as an adjunct to clinical diagnosis and follow-up. Histopathologically MMs are more highly vascularized than benign nevi and various studies have demonstrated the intimate relationship between vascularization and the degree/level of skin blood flow in blood perfusion techniques [96, 98, 100-103]. Laser Doppler perfusion monitoring (LDPM) as well as LDPI both demonstrate significant, although not completely discriminative, differences in perfusion levels between MM and benign PSLs [104].

The principle behind LDPI is the doppler effect on monochromatic radiation caused by movement of erythrocytes in the microvascular network [105]. The output of the LDPI system consists of two different two-dimensional data sets, perfusion and total backscattered light intensity (TLI), with a point-to-point correspondence. The blood perfusion data set, represented by a color-coded image, is calculated from the backscattered and Doppler-shifted light, defined as the product of the red blood cells mean velocity times their concentration in the sampled tissue volume [103]. The second data set maps the TLI and is coded into a photographic-like grey scale image of the lesion. When the laser beam is reflected by the erythrocytes, the returning signal is recorded in the head of the scanner and translated into an electrical impulse; a scale of six colors demonstrates increasing degrees of perfusion in colors of blue, green, yellow and red [105]. Since laser light is the origin of this type of image, it should not be confused with common optical grey scale images generated by broadband backscattered light. Each recorded image consists of 64 × 64 measurement sites and represents the blood perfusion in a skin area of approximately 13 × 13 mm. LDPI is influenced by the number and the velocity of erythrocytes in the tissue [106]. Several studies showed that LDPI has a sensitivity of almost 100% and a specificity of 85-90% [104, 107]. Stucker et al. examined 189 patients with LDPI and found that perfusion was 3.6 ± 1.5 times higher in MMs and a higher vessel density when compared to benign PSLs because of neovascularization which starts very early during the radical growth phase [96-98]. Barnhill et al. suggested that, in terms of vessel counts, vascularization gradually increases during the transition process from benign nevi to dysplastic nevi and finally primary melanomas [96]. Furthermore, Tur et al. and Fallowfield et al. described the excess of pronounced vasculature as an indication that a nevi has a high chance of malignancy [95, 99]. Accordingly, vascularization is gaining importance in the assessment of PSLs and has potential as an adjunct to clinical diagnosis and follow-up. Histopathologically MMs are more highly vascularized than benign nevi and various studies have demonstrated the intimate relationship between vascularization and the degree/level of skin blood flow in blood perfusion techniques [96, 98, 100-103]. Laser Doppler perfusion monitoring (LDPM) as well as LDPI both demonstrate significant, although not completely discriminative, differences in perfusion levels between MM and benign PSLs [104].

The principle behind LDPI is the doppler effect on monochromatic radiation caused by movement of erythrocytes in the microvascular network [105]. The output of the LDPI system consists of two different two-dimensional data sets, perfusion and total backscattered light intensity (TLI), with a point-to-point correspondence. The blood perfusion data set, represented by a color-coded image, is calculated from the backscattered and Doppler-shifted light, defined as the product of the red blood cells mean velocity times their concentration in the sampled tissue volume [103]. The second data set maps the TLI and is coded into a photographic-like grey scale image of the lesion. When the laser beam is reflected by the erythrocytes, the returning signal is recorded in the head of the scanner and translated into an electrical impulse; a scale of six colors demonstrates increasing degrees of perfusion in colors of blue, green, yellow and red [105]. Since laser light is the origin of this type of image, it should not be confused with common optical grey scale images generated by broadband backscattered light. Each recorded image consists of 64 × 64 measurement sites and represents the blood perfusion in a skin area of approximately 13 × 13 mm. LDPI is influenced by the number and the velocity of erythrocytes in the tissue [106]. Several studies showed that LDPI has a sensitivity of almost 100% and a specificity of 85-90% [104, 107]. Stucker et al. examined 189 patients with LDPI and found that perfusion was 3.6 ± 1.5 times higher in MMs and a higher vessel density when compared to benign PSLs because of neovascularization which starts very early during the radical growth phase [96-98]. Barnhill et al. suggested that, in terms of vessel counts, vascularization gradually increases during the transition process from benign nevi to dysplastic nevi and finally primary melanomas [96]. Furthermore, Tur et al. and Fallowfield et al. described the excess of pronounced vasculature as an indication that a nevi has a high chance of malignancy [95, 99]. Accordingly, vascularization is gaining importance in the assessment of PSLs and has potential as an adjunct to clinical diagnosis and follow-up. Histopathologically MMs are more highly vascularized than benign nevi and various studies have demonstrated the intimate relationship between vascularization and the degree/level of skin blood flow in blood perfusion techniques [96, 98, 100-103]. Laser Doppler perfusion monitoring (LDPM) as well as LDPI both demonstrate significant, although not completely discriminative, differences in perfusion levels between MM and benign PSLs [104].
normal healthy skin [104]. Cutaneous blood flow measurement can play an important part in the assessment of melanoma and can possibly be used as an adjunct to clinical diagnosis and follow-up, and as a source of valuable preoperative information about tumor vascularization [104, 107, 108].

Other imaging

Electrical bio-impedance

Several researchers have used electrical bio-impedance to assess skin cancers and other cutaneous lesions [109-113]. Electrical impedance of tissue reflects transient and special physical properties based on specific frequency regions and dispersion [114, 115]. δ-dispersion (kilohertz to hundreds of megahertz) is an electrical bio-impedance mainly affected by the shape of the cells, structure of cell membranes and amount of water (both intra- and extracellular). Based on these features, electrical impedance of cancer cells and healthy cells are different because cancer cells have a different shape, size and orientation – the same criteria as used in histopathological evaluation [110-113]. Measurements of suspicious PSLs are made with an electrical impedance spectrometer both over the center of the lesion as well as an ipsilateral reference skin site. Prior to measurements, the site and lesion are soaked with 0.9% normal saline solution (pH 6) for 1 min to reduce the naturally high impedance of the SC and increase the contact between the tissue and probe. Magnitudes between 1 and 10 kHz and phases between 0.1 and 1 MHz are used to differentiate melanoma from benign nevi [109]. Impedance spectra of the lesions and the reference skin are measured at five depth levels, approximately 0.1-2 mm into the tissue [109, 116]. Newer models of electrical impedance have a digital camera along with an automated software analysis. The induced electric current is detected at each sensor element and measured using a trans-impedance technique, while the other electrodes remain at ground potential [117]. The typical amplitude applied between the source electrode and the measuring probe is in the range of 2.5 V with a frequency range of 100 Hz-100 kHz. After the probe is applied to the lesion, the measured trans-impedance signals are converted to digital signals and transferred to the computer for further analysis [116]. A digital picture of the lesion and its surroundings is recorded followed by a close-up frame of the lesion. The borders and axes of the lesion are displayed on the computer and an automatic algorithm provides five parameters to describe the lesion. The first parameter is asymmetry (A1 and A2) which is defined as the ratio between the non overlapping area of the lesion when folded over either of the two perpendicular axes, and the total area. The ratio between the squared perimeter of the lesion and a factor of the area inside the border is defined as the second border parameter (B). The color parameter (C) is defined as the standard deviation of the red-gray levels inside the border. Finally, the surface (S) is defined as the area of the lesion in square millimeters [116]. The combined examination of electrical impedance scanning and image analysis lasts approximately 7 minutes [116]. Electrical impedance has a high sensitivity of almost 100 percent for in situ and thin melanomas [116]. Therefore, electrical impedance can differentiate melanoma from benign nevi with studies demonstrating ranges of 92-100% sensitivity and 67-75% specificity [109, 117]. However, electrical impedance properties of human skin vary significantly with the body location, age, gender, and season [118-121]. Aberg et al. studied the bio-electrical impedance spectra from skin cancer and other lesions by using both regular non-invasive probes and a novel micro-invasive electrode system with a surface furnished with tiny spikes that penetrate the SC [122]. Even though the spiked electrode is invasive by definition, Aberg et al. considered it micro-invasive because the spikes penetrate the SC and epidermis but do not reach the depths of blood vessels or sensory nerves in dermis [122]. Thus, the information from micro-invasive impedance is better suited for detecting subtle skin alterations that manifest beneath the SC, such as melanoma. Aberg et al. found that the spiked micro-invasive electrodes are better for melanoma detection (92% sensitivity and 80% specificity) than the regular non-invasive probes [122]. Commonly used instruments in electrical impedance studies include the SciBase II impedance spectrometer (SciBase AB, Huddinge, Sweden), and the TS2000M (Mirabel Medical System Ltd., Migdal Ha`Emek, Israel).

Magnetic Resonance Imaging (MRI)

Recently, MRI has been used for investigating PSLs including melanocytic skin lesions [123-125]. MRI scans utilize radio waves and strong magnets instead of X-rays. The principle behind MRI is the absorption and re-emission of radio waves from tissue protons exposed to a strong magnetic field. Under the influence of radio frequency pulses, a proton returns to a stable low-energy state and emits radio waves that are detected by the coil [126]. A computer translates the pattern of radio waves emitted by the examined tissues into a detailed image. It provides cross-sectional slices of the body as well as parallel slices along the length of the body. Although rarely used, a contrast material may be injected as with CT scans. Differences in MRI signal intensity from structures allow good tissue contrast with T1- and T2-weighted imaging differing in signal contrast characteristics. The spatial resolution produced by conventional MRI machines has been of the order of 1 mm, which has been inadequate for visualizing the different layers of skin that require a resolution of <100 μm. Recently, specific imaging devices have been developed that allow high-resolution MRI imaging of the skin, permitting clear differentiation of the SC, epidermis and dermis in vivo with an image acquisition time of 3 minutes 25 seconds and a section thickness of 1.2 mm. With this spatial resolution, the epidermis appears as a high-intensity layer, while dermis appears as hypointense with an irregular interface of subdermal fat [127, 128]. Specialized MRI surface coils have higher resolution than standard coils and are good for dermatologic conditions [129]. In MRI, edema of the surrounding soft tissue and non-homogeneity are features suggesting malignancy [130]. Takahashi et al. found that, even though the morphologic features of melanoma obtained by MRI are not helpful for diagnosis, the signal intensity assessed by the tumor-to-fat contrast ratio on T2-weighted images clearly differentiated between melanoma and benign PSLs [131]. Maurer J et al. studied 27 melanocytic nevi and 18 MMs with high resolution MRI and determined the signal intensities and signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) of tumors in enhanced (T1, T2, water-suppression, and fat-suppression sequences) and contrast-enhanced images (T1
enzymes (early marker for malignancy along with other intracellular imaging techniques [135]. GLUT1 is also considered an Fluroscence (18F-DG), tumor cells can be detected with tumor cells. Therefore, when 2-DG is labeled with 18-deoxyglucose, which is used to sustain their higher prolifera-
tion via upregulated GLUT1 glucose membrane transport-
erative rate and increased need for macromolecular synthesis of glucose, which is a phenomenon now known as the “Warburg effect” [133, 134]. Tumor cells are notorious for their consumption anaerobic glycolysis even in the presence of abundant oxy-
gen, a phenomenon now known as the “Warburg effect” [133, 134]. Tumor cells are notorious for their consumption of glucose, which is used to sustain their higher proliferative rate and increased need for macromolecular synthesis in comparison to normal healthy cells. 2-deoxyglucose (2-DG) has a structure similar to glucose and its accumula-
tion via upregulated GLUT1 glucose membrane transport-
ers is responsible for increased glucose consumption in tumor cells. Therefore, when 2-DG is labeled with 18-Fluoroscence (18F-DG), tumor cells can be detected with imaging techniques [135]. GLUT1 is also considered an early marker for malignancy along with other intracellular enzymes (i.e. hexokinase, phosphofructokinase and pyru-
ate dehdrogenase) that have an increased activity in the metabolic pathways of malignant cells [133-135].

Positron emission computed tomography (PET)

PET is a non-invasive, high-resolution imaging technique used to detect metastatic spread of melanoma earlier than conventional methods. Over seven decades ago, the bio-
chemist Otto Warburg observed that most tumors relied on anaerobic glycolysis even in the presence of abundant oxygen, a phenomenon now known as the “Warburg effect” [133, 134]. Tumor cells are notorious for their consumption of glucose, which is used to sustain their higher proliferative rate and increased need for macromolecular synthesis in comparison to normal healthy cells. 2-deoxyglucose (2-DG) has a structure similar to glucose and its accumulation via upregulated GLUT1 glucose membrane transporters is responsible for increased glucose consumption in tumor cells. Therefore, when 2-DG is labeled with 18-Fluoroscence (18F-DG), tumor cells can be detected with imaging techniques [135]. GLUT1 is also considered an early marker for malignancy along with other intracellular enzymes (i.e. hexokinase, phosphofructokinase and pyruvate dehydrogenase) that have an increased activity in the metabolic pathways of malignant cells [133-135]. PET using 18F-FDG has been studied extensively since 1991 and shows great promise in the detection of metastatic cutaneous melanoma and may also prove useful in the secondary prevention of primary melanoma in those individuals at high risk or with a familial disposition [136]. Although rare, primary melanomas have also been found in oculocutaneous albinism, anorectal, genitourinary, mucosal, leptomeningeal, sinonasal, pulmonary, mediastinal, ova-
rian, vaginal, and vulvar sites and can represent diagnostic challenges [137-148]. PET may be valuable in detecting these primary melanocytic lesions in non-skin sites as a dermatologist’s trained eye and the other diagnostic tech-
niques described above can only detect those primary melanomas localized to skin.

When 18F-FDG is used, it emits a positron which is di-
rected onto negatively charged electrons. When the two particles collide and exterminate each other at 180°, two photons are formed, with each having an energy of 511 KeV [149]. PET scan has the ability to detect these photons, localize their source of origin, and produce an image based on the photon activity. The entire body can be analyzed either in qualitative or quantitative measurements, which may be helpful in differentiating between benign and ma-
lignant cells and determining the treatment response [150-155]. Table 5 displays the overall sensitivity and specificity of PET in different studies. When compared to ultrasound, PET scan is more costly and time consuming. However, ultrasound examination of lymph node metastasis requires more time due to the sequential examination of individual lymph nodes. Additionally, whole-body PET scanning is cheaper than whole-body MRI scanning [156, 157]. The sensitivity of PET is also decreased when tumor size is small (table 6).

Conclusion

The timely diagnosis and management of melanoma during its early stages is critical for a patient’s extended survival. As mentioned, numerous non-invasive imaging methods are currently available for patients who are diagnosed with or at risk for melanoma like the dermoscopes, MoleMax™, SIAscope™, SolarScan®, MelaFind™, Ultrasonography, MRI and PET scan; LASER based technology like CSLM, OCT, LDPI and electrical bio-impedance. The major disadvantages for non-invasive testing are the cost and patient anxiety. Therefore, it is critical to consider which imaging methods are useful and feasible. In the clinical setting, computer-based systems like MelaFind™ and SolarScan®, may provide diagnostic information. However some testing devices are not appropriate for the office setting like MRI and PET scans. Apart from the cost and office setting, there are several issues that should be considered before using non-invasive methods for melanoma diagnosis. The most important are the privacy and security of photography and the training and experience of dermatologists and/or physicians. Some other issues for consideration are the number of photographs required, when photographs and procedures

Table 5. Detection of melanoma using FDG-PET

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Metastases</th>
<th>Patients</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gritters et al. [160]</td>
<td>1993</td>
<td>All foci</td>
<td>12</td>
<td>92</td>
<td>100</td>
</tr>
<tr>
<td>Steinert et al. [161]</td>
<td>1995</td>
<td>All foci</td>
<td>33</td>
<td>92</td>
<td>100</td>
</tr>
<tr>
<td>Boni et al. [162]</td>
<td>1995</td>
<td>All foci</td>
<td>15</td>
<td>91</td>
<td>67</td>
</tr>
<tr>
<td>Blessing et al. [163]</td>
<td>1997</td>
<td>Lymph nodes</td>
<td>20</td>
<td>74</td>
<td>93</td>
</tr>
<tr>
<td>Wagner et al. [164]</td>
<td>1998</td>
<td>Lymph nodes</td>
<td>11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Macfarlane et al. [165]</td>
<td>1998</td>
<td>Lymph nodes</td>
<td>23</td>
<td>85</td>
<td>91</td>
</tr>
<tr>
<td>Rinne et al. [166]</td>
<td>1998</td>
<td>Skin</td>
<td>100</td>
<td>91</td>
<td>94</td>
</tr>
<tr>
<td>Holder et al. [167]</td>
<td>1998</td>
<td>All foci</td>
<td>76</td>
<td>94</td>
<td>83</td>
</tr>
<tr>
<td>Eigtved et al. [168]</td>
<td>2000</td>
<td>All foci</td>
<td>38</td>
<td>97</td>
<td>56</td>
</tr>
<tr>
<td>Acland et al. [169]</td>
<td>2000</td>
<td>Skin</td>
<td>54</td>
<td>78</td>
<td>87</td>
</tr>
<tr>
<td>Swetter et al. [170]</td>
<td>2002</td>
<td>All foci</td>
<td>104</td>
<td>84</td>
<td>97</td>
</tr>
<tr>
<td>Gulec et al. [171]</td>
<td>2003</td>
<td>> 1-cm lesions</td>
<td>29</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 1-cm lesions</td>
<td>20</td>
<td>13</td>
<td>33</td>
</tr>
<tr>
<td>Mottaghy et al. [172]</td>
<td>2007</td>
<td>All foci</td>
<td>127</td>
<td>86</td>
<td>94</td>
</tr>
</tbody>
</table>

*All foci include skin, lymph nodes, liver, lung, neck, scalp, eyelid, and abdomen.
Table 6. Comparison of technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoleMax</td>
<td>N/A</td>
<td>N/A</td>
<td>Two camera system; no oil immersion required; transparent overlay for follow-up; total body photography</td>
<td>Requires oil immersion</td>
</tr>
<tr>
<td>Spectrophotometric Intracutaneous Analysis (SIAscope)</td>
<td>96% [38]</td>
<td>87% [38]</td>
<td>Diagnosis of PSLs up to 2 mm; visualizes skin structure, vascular composition and reticular pigment networks; handheld scanner</td>
<td></td>
</tr>
<tr>
<td>SolarScan</td>
<td>91% [24]</td>
<td>68% [24]</td>
<td>Empirical data base for comparison; session and image-level calibration; recorded on graphical map of body; detection of 14 shades of dermatoscopic colors, including Blue-White veil</td>
<td>Requires oil immersion</td>
</tr>
<tr>
<td>MelaFindTM</td>
<td>95-100% [34, 35]</td>
<td>70-85% [34, 35]</td>
<td>Multispectral sequence of images created in < 3 s; images have > 1 million pixels</td>
<td></td>
</tr>
<tr>
<td>DermDOCTM</td>
<td>N/A</td>
<td>N/A</td>
<td>High quality images; variable magnification; macro/micro application</td>
<td>Loses image resolution after conversion of video to images</td>
</tr>
<tr>
<td>Tape Stripping mRNA</td>
<td>68.7% [44]</td>
<td>74.5% [44]</td>
<td>Rapid and easy to perform; painless; practical for any skin surface; can retest same lesion</td>
<td>Need larger gene expression profiles for comparison</td>
</tr>
<tr>
<td>Ultrasound Technology</td>
<td>99.2% [51, 57-59]</td>
<td>99.7% [51, 57-59]</td>
<td>Cost effective; information about inflammatory processes of skin in relationship to nerves and vessels</td>
<td>Depth of penetration decreases with increasing frequency; tumor thickness may be overestimated due to underlying inflammatory infiltrate; melanoma metastasis cannot be separated from that of another tumor</td>
</tr>
<tr>
<td>Confocal scanning laser microscopy (CSLM)</td>
<td>98.15% [158]</td>
<td>98.89% [158]</td>
<td>Histopathological evaluation at bedside with similar criteria; longer wavelengths can measure up to papillary dermis; fiber-optic imaging allows for flexible handheld devices</td>
<td>Poor resolution of chromatin patterns, nuclear contours and nucleoli; assesses micro-anatomical structures only to depth of 300 μm; melanomas without in situ component will likely escape detection</td>
</tr>
<tr>
<td>Optical Coherence Tomography (OCT)</td>
<td>N/A</td>
<td>N/A</td>
<td>High resolution cross-sectional images resembling histopathological section of skin; 4 mm scan length obtained in 4 s; higher resolution than ultrasound and greater detection depth than CSLM; Doppler and phase-resolved techniques allow visualization of vessels and determination of flow velocity</td>
<td>Photons are scattered more than once, which can lead to image artifacts; ointment or glycerol may be needed to reduce scattering and increase detection depth; visualization of architectural changes and not single cells</td>
</tr>
<tr>
<td>Laser Doppler Perfusion Imaging (LDPI)</td>
<td>~100% [104, 107]; 85-90% [104, 107]</td>
<td></td>
<td>Adjunct to clinical diagnosis and follow-up; source of preoperative tumor vascularization</td>
<td>Differences in perfusion levels between MM and benign PSLs are not completely discriminative</td>
</tr>
<tr>
<td>Electrical Bio-impedance</td>
<td>92-100% [109, 117]; spiked micro-invasive electrodes: 92% [122]</td>
<td>67-75% [109, 117]; spiked micro-invasive electrodes: 80% [122]</td>
<td>Complete examination lasts 7 min.</td>
<td>Must be soaked with 0.9% normal saline solution (pH 6) for 1 min to reduce impedance of the SC; electrical impedance properties of human skin vary significantly with the body location, age, gender, and season</td>
</tr>
<tr>
<td>Magnetic Resonant Imaging (MRI)</td>
<td>N/A</td>
<td>N/A</td>
<td>Permits clear differentiation of the SC, epidermis and dermis in vivo</td>
<td>Cost; equipment size; acquisition time; need for specialized training; contraindicated in patients with metal implants</td>
</tr>
<tr>
<td>Positron Emission Computer Tomography (PET)</td>
<td>See table 5</td>
<td>See table 5</td>
<td>Detects micro metastasis based on abnormal cellular metabolic activity; may be valuable in detecting primary melanocytic lesions in non-skin sites; whole-body PET scanning is cheaper than whole-body MRI</td>
<td>More costly and time consuming than ultrasound; sensitivity decreases when tumor size is small</td>
</tr>
</tbody>
</table>
should be repeated, and how the cost of photography will be reimbursed by insurance companies and Medicare. We suggest all PSLs should be evaluated clinically but those that are suspicious or do not conform completely to the ABCD criteria may need further in depth evaluation by any of the non-invasive techniques. All suspicious lesions should be followed up within 3-6 months. Even though digital technology has an increasingly important role in the diagnosis of melanoma, there is no substitute for the trained human eye and hands-on clinical experience.

Conflict of interest: Jitendrakumar K. Patel and Sadeq Amini were previously involved in a study sponsored by Electro-Optical Sciences, Inc. as research fellows at the University of Miami Miller School of Medicine. Brian Berman was the principal investigator of the study by Electro-Optical Sciences, Inc. at the University of Miami Miller School of Medicine. All other authors have no conflict of interest.

References

compared with physical examination in follow-up of melanoma with cutaneous melanoma.

examination for the detection of locoregional metastases in patients mhz sonography of the skin in preoperative diagnosis.

a prospective study of 1288 patients.

during the follow-up of patients with cutaneous melanoma: Results of

ner G, Garbe C. Ultrasound examination of regional lymph nodes malarma. 50

tastases of cutaneous melanoma: Diagnosis by B-scan and color

ber JC. High-resolution ultrasound reflex transmission imaging and diagnostic high-frequency US in dermatology.

MHz ultrasound transducer: A comparative study.

II: Advances in instrumentation and comparison with histology.

malignant skin tumors by confocal laser scanning microscopy.

bow K. The real-time, three-dimensional analyses of benign and malignant superficial lymphadenopathy: The role of
classifier to determine the risk of melanoma in suspicious

quantifying and distinguishing inflammatory skin reactions.

EJD, vol. 18, n° 6, November-December 2008